Virtdbg

Using virtualization features for debugging the Windows 7 kernel

Damien Aumaitre

Recon 2011

Preamble
Loader
Debugger

Roadmap

(@ Preamble
o How it began
o Designing a kernel debugger
o Debugging Windows 7 x64

@ Loader

(@ Debugger

D. Aumaitre Virtdbg 2/42

Preamble How it began
Loader Designing a kernel debugger
Debugger Debugging Windows 7 x64

How it began

Study of Windows 7 x64 internals
o PatchGuard
o Code integrity
o DRM J

But how?
o Static analysis: IDA, metasm

o Dynamic analysis: need a kernel debugger, Which one?

D. Aumaitre Virtdbg 3/42

Preamble How it began
Loader Designing a kernel debugger
Debugger Debugging Windows 7 x64

Dynamic analysis: kernel debugger

Plenty of kernel debuggers
o Local: SoftICE, Syser, HyperDbg. ..
o Remote: WinDbg, Gdb, ...

o Need x64 support <= gdb and windbg handle x64
o Need to work without /DEBUG < gdb inside virtual machine?

D. Aumaitre Virtdbg 4/42

Preamble How it began
Loader
Debugger

Dynamic analysis: virtualisation

Lots of candidates
o XEN, gemu, vmware, ...

o But kernel debugging not easy with gdb stub (too
process-centric), need to develop extensions to gdb protocol

o Big softwares, hard to tinker with

o Emulated devices may interfere with Windows 7 internals (not
sure if DRM stack will load under vmware)

4

o Which handles x64
o And work without /DEBUG boot flag

o Using real hardware

D. Aumaitre Virtdbg

5/42

Preamble
Loader
Debugger

What kind of debugger?

Designing a kernel debugger

Local debuggers

Pros
o Need only one box

o Easy to setup

Cons
o Hard to extend
o Lack basic features
(copy/paste 7)
o Hard dependencies on

hardware like framebuffer,
keyboard for the GUI

Remote debuggers

o Extendable easily with
plugins

o Lot of code is deported,
easier to develop

o Copy/paste :)

Cons
o Requires two boxes

o Need a remote stub for
handling communications

4

D. Aumaitre

Virtdbg

6/42

Preamble
Designing a kernel debugger

How do they work?

They catch processor interrupts (often by hooking the IDT).
Example: [A-32

o IDT (Interruption Descriptor Table) stores interruption vectors

o INT1 is used by hardware breakpoints (DR registers) and
singlestep

o INT3 is used by software breakpoints

o INT14 (page fault) is used for catching memory breakpoints

v

D. Aumaitre Virtdbg 7/42

Preamble
Loader Designing a kernel debugger

Debugger

How do they work?

Two modes of operations
o Debug mode: debugger waits for user interactions, other
processors are halted
o Normal mode: the operating system runs as usual

Interactions
o We switch to debug mode when receiving a breakin request:

o To inspect processor registers
o To inspect memory (virtual, physical, io)
o To set breakpoints

o Switch to normal mode with a continue request

D. Aumaitre Virtdbg 8/42

Preamble

Debugging Windows 7 x64

Debugging Windows 7 x64

Several problems arise

o How to execute kernel code when signed drivers are
mandatory?

o How to gain control of the interruption vectors when
PatchGuard deny modifications of the IDT?

o Patching the kernel is not possible with PatchGuard (bye bye
software breakpoints)

o How to communicate with the debugger stub when the entire
OS is frozen?

D. Aumaitre Virtdbg 9/42

Preamble
Loader
Debugger Debugging Windows 7 x64

Bypassing PatchGuard

PatchGuard
PatchGuard protects the kernel from malicious activities:
o It prevents kernel code modification
o Also prevents the modification of major structures (IDT,
SSDT, ...)

o Causes a blue screen if a modification is detected)

o By using hardware assisted virtualization

o We can control very precisely the execution of the target system
with a hypervisor (VMM)

o We take control whenever an interruption occurs

o Bonus: very stealth by design (cf. BluePill)

D. Aumaitre Virtdbg 10/42

Preamble
Loader
Debugger Debugging Windows 7 x64

Communication with the hypervisor

Communication between debugger/debuggee

o Usually kernel debuggers use a serial interface to
communicate; it works but it's really slow :(

o WinDbg uses FireWire for highspeed debugging, it's
convenient and easy to setup

v

o Speed is good (around 10Mb/s)
o Widely deployed

o But I don't know FireWire. ..

o Except for doing DMA attacks :-)

D. Aumaitre Virtdbg 11/42

Preamble
Loader
Debugger Debugging Windows 7 x64

DMA

Theory
o Historically, all /O came through the CPU. It's slow.
o DMA instead goes through a fast memory controller
o Implemented as part of the PCl specification

o Any device on the PCI / PCI Express bus can issue a
read /write DMA

y

o The CPU and thus OS are entirely bypassed, cannot prevent
malicious DMA requests

D. Aumaitre Virtdbg 12/42

Preamble
Loader
Debugger Debugging Windows 7 x64

DMA

Consequences
o Any device may read/write the physical memory
o Operating system's code and internal data can be modified

o Security mechanisms rendered useless

Over-simplified example of DMA access

1—f, Memory
N— 1/ gontroller 1\

PCI bus L"\:’ Processor

DMA access

Physical
memory

D. Aumaitre Virtdbg 13/42

Preamble
Loader
Debugger Debugging Windows 7 x64

Communication with the hypervisor

o No hardware specific code (only read/write in shared buffers)
o libforensic1394 library allows easy development

bus = Bus.new()

bus.enable_sbp2

puts "waiting for dma access..."
sleep 5

devices = bus.devices

dev = devices[0]

dev.open

mem = FireWireMem.new(dev)

puts mem.hexdump(0x8000, 0x100)

o Bonus: use DMA attacks to load unsigned kernel drivers

D. Aumaitre Virtdbg 14/42

Preamble
Loader
Debugger Debugging Windows 7 x64

Bypassing driver integrity verification

Signed drivers
o Since Vista, drivers need to be signed on x64 editions of
Windows

o This can be disabled but there are side effects (booting in test
signing mode)

y

o Do not use the kernel code for loading drivers

o We implement our own loader thus skipping the verification
process

D. Aumaitre Virtdbg 15/42

Preamble
Loader
Debugger

Roadmap

(@ Preamble

@ Loader
o Reconstructing the virtual memory
o Rerouting execution flow
o Loader

(@ Debugger

D. Aumaitre Virtdbg 16/42

Loader

Loading the driver code

"Live" loader
o Parses physical memory and reconstructs virtual /physical layer

o Injects driver code in two stages (more on that later)

o Loads driver code without using kernel API but custom
routines (hence bypassing signatures)
@ Copy binary sections, resolve imports and apply relocations
@ Redirect execution to driver entrypoint

D. Aumaitre Virtdbg 17/42

Preamble
Loader
Debugger

Injecting a driver with DMA requests

What do we need?
o Reconstructing the virtual memory mapping
o Space for storing our payload

o Finding a function pointer

Difficulties
o Can't use kernel routines for loading the image

o Need to not trigger PatchGuard

D. Aumaitre Virtdbg 18/42

Reconstructing the virtual memory
Loader

x64 Virtual address translation

Virtual Address

63 48 47

3938 30 29 2120 12 11 0
Page-M
. LevaeEI{i Oz:et Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend Pointer Offset Offset Offset Page Offset
(PML4)
9 9 9 9 12
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
PTE 2
52
o2 PoPe Physical
™ PML4E .
52 -
Lel ppe Address
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
Page-Map Level-4
Base Address ' CR3
Source: AMD64 Archi ure Progr ‘s M I Volume 2 (System Programming)
D. Aumaitre Virtdbg

19/42

Preamble Reconstructing the virtual memory
Loader
Debugger

Finding cr3

Classic method
o Searching for the beginning of an EPROCESS structure
o Use backup copy of cr3 in DirectoryTableBase field
o Take forever. .. (around several minutes)

o Can be at the end of the physical memory

struct _KPROCESS, 37 elements, 0x160 bytes
+0x000 Header : struct _DISPATCHER_HEADER, 29 elements, 0x18 bytes
+0x018 ProfileListHead : struct _LIST_ENTRY, 2 elements, 0x10 bytes
+0x028 DirectoryTableBase : Uint8B

D. Aumaitre Virtdbg 20/42

Reconstructing the virtual memory
Loader

Finding cr3

Quicker method
o Searching for the kernel beginning

o Getting kernel symbols addresses using debug information
(PDB)

o Get offset of the first KPCR structure (KiInitialPCR)

o We find the values of all control registers included cr3

struct _KPCR, 27 elements, 0x4e80 bytes

+0x180 Prcb : struct _KPRCB, 242 elements, 0x4d00 bytes
+0x040 ProcessorState : struct _KPROCESSOR_STATE, 2 elements, Ox5b0O bytes
+0x000 SpecialRegisters : struct _KSPECIAL_REGISTERS, 27 elements, 0xd8 bytes
+0x000 Cro0 : Uint8B
+0x008 Cr2 : Uint8B

+0x010 Cr3 : Uint8B

D. Aumaitre Virtdbg 21/42

Preamble
Loader Rerouting execution flow
Debugger

What's next?

o We can interpret any address in virtual memory

o In order to execute arbitrary kernel code we need a pointer to
overwrite

Which pointer?
o Can't touch IDT or SSDT or kernel code due to PatchGuard

o Need something stealthier, often called and not checked by
PatchGuard!)

Using function pointers located in 0BJECT_TYPE_INITIALIZER
structure ?

“Must read: Skape and Skywing, “A catalog of Windows Local Kernel-mode
Backdoor Techniques”, 2007, Uninformed Vol. 8

’

D. Aumaitre Virtdbg

22/42

Loader Rerouting execution flow

OBJECT_TYPE_INITIALIZER

o Each object is categorized by an object type represented by a
OBJECT_TYPE structure

struct _OBJECT_TYPE, 12 elements, Oxd0O bytes

+0x000 TypeList : struct _LIST_ENTRY, 2 elements, 0x10 bytes

+0x010 Name : struct _UNICODE_STRING, 3 elements, Ox10 bytes

+0x020 DefaultObject : Ptr64 to Void

+0x028 Index : UChar

+0x040 TypeInfo : struct _OBJECT_TYPE_INITIALIZER, 25 elements, 0x70 bytes

o OBJECT_TYPE structure contains a nested structure named
OBJECT_TYPE_INITIALIZER

D. Aumaitre Virtdbg 23/42

Loader Rerouting execution flow

OBJECT_TYPE_INITIALIZER

o Several fields of the OBJECT_TYPE_INITIALIZER structure are
functions pointers
struct _OBJECT_TYPE_INITIALIZER, 25 elements, 0x70 bytes

+0x030 DumpProcedure : Ptr64 to void

+0x038 OpenProcedure : Ptr64 to long

+0x040 CloseProcedure : Ptré4 to void

+0x048 DeleteProcedure : Ptr64 to void

+0x050 ParseProcedure : Ptré4 to long

+0x058 SecurityProcedure : Ptr64 to long

+0x060 QueryNameProcedure : Ptr64 to long

+0x068 OkayToCloseProcedure : Ptr64 to unsigned char

o For example, OpenProcedure will point to
nt!PspOpenProcess for a Process

D. Aumaitre Virtdbg 24/42

Loader Rerouting execution flow

Finding OBJECT_TYPE structures

Finding non-exported kernel symbols

o Several non-exported kernel symbols are present in the
KDDEBUGGER_DATA64 structure 2 ©

o defined in the Debugging Tools For Windows SDK header file
wdbgexts.h

o This structure is pointed by the KdDebuggerDataBlock kernel

global variable
Qo typedef struct _KDDEBUGGER_DATA64 {
DBGKD_DEBUG_DATA_HEADER64 Header;
ULONG64 KernBase;
ULONG64 PsLoadedModuleList;

ULONG64 ObpTypeObjectType;

“http://uninformed.org/index.cgi?v=4&a=2&p=5
bhttp://web.archive.org/web/20061110120809/http:
//www.rootkit.com/newsread.php?newsid=153

D. Aumaitre Virtdbg 25/42

http://uninformed.org/index.cgi?v=4&a=2&p=5
 http://web.archive.org/web/20061110120809/http://www.rootkit.com/newsread.php?newsid=153
 http://web.archive.org/web/20061110120809/http://www.rootkit.com/newsread.php?newsid=153

Preamble
Loader
Debugger Loader

Loader

o The hypervisor code is implemented as a WDK driver
o We inject the hypervisor with several steps:

@ We inject a stager responsible for allocating the memory used
for storing the code of the hypervisor (for example, first
memory page of a already loaded driver or at the end of the
KUSER_SHARED_DATA structure)

@ Once the memory is allocated, we map the driver section by
section

@ Then we resolve imports and apply relocations

Effectively bypassing signed driver mechanism

D. Aumaitre Virtdbg 26/42

Loader
Loader

What's next?

o We can load an arbitrary driver in the target OS
o What kind of driver?

o Hypervisor

o Virtualize the operating system without rebooting (ala
BluePill)

o Requires Intel VMX hardware virtualization features (no AMD
support)

D. Aumaitre Virtdbg 27/42

Preamble
Loader
Debugger

Roadmap

@ Preamble

@ Loader

(@ Debugger
o Hypervisor

o Using an hypervisor for debugging
o Communication
o Implementation

D. Aumaitre Virtdbg 28/42

Hypervisor

Debugger

Specifications

Constraints

Minimal impact on the system (don't use OS functions (if possible)
and no modifications of kernel structures

v

Features
o Stealth by design

o Heavy treatment deported on the client
o Basic primitives (for the moment):
o Read/write memory
Read/write registers
Singlestepping execution
Stopping and resuming execution

© © ©

D. Aumaitre Virtdbg 29/42

Preamble By penvisoy

Loader
Debugger

VMX (Virtual Machines eXtensions)

Two operating modes
VMX root hypervisor mode

VMX non-root guest mode

Remarks
o By design we can't tell which mode is active
o Switching between these modes is called VM-Entry (VMM =
Guest) and VM-Exit (Guest = VMM)
o Processor behavior is modified in VMX non-root mode: some
events cause transitions (access to control or debug registers,
exceptions etc.)

D. Aumaitre Virtdbg

30/42

Hypervisor

Debugger

VMX (Virtual Machines eXtensions)

Virtualization setup

o VMX mode is activated by the VMXON instruction
Virtual machines are launched with the VMLAUNCH instruction
Each VM-Exit calls the hypervisor handler

©

©

©

The hypervisor resume guest execution with the VMRESUME
instruction

o VMX mode is deactivated by the VMXOFF instruction

VMCS (Virtual Machine Control Structure)
o Controls transitions between VMX root and VMX non-root

o Manipulated by new instructions: (VMPTRST, VMPTRLD,
VMREAD, VMWRITE and VMCLEAR)

D. Aumaitre Virtdbg 31/42

Transitions

Preamble
Loader
Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

D. Aumaitre

VM-root
(hypervisor)

HandleVmExit :

- EXCEPTION

vmresume

Virtdbg

VM-non-root
(virtual machine aka target)

32/42

Hypervisor

Prii”;g:r Using an hypervisor for debugging
Communication
Debugger

Implementation

Using an hypervisor for debugging

Debugger primitives
o Break or continue target execution
Inspect registers

o
o Inspect memory
Qo

Singlestep through code

D. Aumaitre Virtdbg 33/42

Using an hypervisor for debugging
Debugger

Using an hypervisor for debugging

Break/Continue
VM-Exit occurs when context is changed (mov cr3, rax for example)
hence providing us with a regular callback for knowing if the user asked
for system interactions

o If we need to switch to debug mode:

o Hypervisor stops the other processors
o And enters a loop waiting for orders

o If we don't: just resume target execution

Inspecting registers
o A part of the context is saved in the VMCS

o We save the rest before entering in VMX root mode
o We restore the context before executing the VMRESUME instruction

D. Aumaitre Virtdbg 34/42

Preamble
Loader
Debugger

Using an hypervisor for debugging

Using an hypervisor for debugging

Inspecting memory
o Must be careful, no page fault can occur in the VMX-root
handler!
o We check the PTE (Page Table Entry) in order to validate the
address provided by the client

o Manipulating physical memory (no copy-on-write :-s)

Single Step
o Easy because we control the RFLAGS register and can intercept
INT1

D. Aumaitre Virtdbg 35/42

Debugger Communication

Communication

Shared physical memory
o Use libforensic1394 @ for handling DMA setup

o Contains the necessary information for synchronising and
exchanging data between the hypervisor and the client

o Two areas are for exchanging requests ("uplink" and
"downlink")

https:/ /freddie.witherden.org/tools/libforensic1394/

D. Aumaitre Virtdbg

36/42

Debugger Implementation

Virtdbg

What is it?
o Hypervisor (like BluePill) to control the target

o Uses FireWire DMA requests for loading the VMM and giving
orders to the debugger

o Client GUI leveraging the Metasm framework

o Designed to debug Windows 7 x64 “on the fly" (i.e. without
booting with /DEBUG)

Uses
o Analyze hardware specific software like DRM
o Malware analysis (TLD4)
o Debugging Windows internals (PatchGuard, code integrity)

D. Aumaitre Virtdbg 37/42

Hypervisor

Prezme Using an hypervisor for debugging
Loader P
Communication
Debugger

Implementation

First implementation (march 2010)

o 2 FPGA: one for handling
DMA requests (Cardbus),
the other for handling
client requests (USB)

o Custom DMA engine in
VHDL

o Driver for USB FPGA
works only on Windows
XP :(

D. Aumaitre Virtdbg 38/42

Preamble
Loader

Dipar Implementation

Second implementation

o Drops FPGA and uses only a FireWire cable for communication

o Leverages the metasm framework

DEMO

D. Aumaitre Virtdbg 39/42

Debugger Implementation

Conclusion

Why this project?

o No real kernel debuggers for Windows 7 x64 (except WinDbg)
o They are very intrusive and need OS cooperation

Future work

o Porting the hypervisor to support 32-bit Windows

o Support of AMD processors (Phenom)

o Add more primitives and events (leveraging all possibilities of
hardware virtualization features)

o Increase furtivity and anti-debug resilience

o Reduce operating system dependancy

o Support for VT-d Intel family of processors (currently only VT-x)

o Check out ramooflax?: preboot hypervisor

“https://github.com/sduverger/ramooflax

D. Aumaitre Virtdbg 40/42

https://github.com/sduverger/ramooflax

Debugger Implementation

Thanks and credits

o Joanna Rutkowska for releasing BluePill (great source of
information on hypervisors)

o Freddie Witherden !, author of libforensic1394 (much better
than previous bindings)
o Yoann Guillot for the Metasm framework 2

o My colleagues at SOGETI/ESEC Lab (especially Christophe
Devine)

D. Aumaitre

https://freddie.witherden.org/tools/libforensic1394/
http://metasm.cr0.org
Virtdbg 41/42

Preamble
Loader

Debugger Implementation

Q&A

Thank you for your attention!
Give it a try! http://code.google.com/p/virtdbg
Questions?

Contact: damien (at) security-labs.org

D. Aumaitre Virtdbg 42/42

http://code.google.com/p/virtdbg

	Preamble
	How it began
	Designing a kernel debugger
	Debugging Windows 7 x64

	Loader
	Reconstructing the virtual memory
	Rerouting execution flow
	Loader

	Debugger
	Hypervisor
	Using an hypervisor for debugging
	Communication
	Implementation

