
Virtdbg
Using virtualization features for debugging the Windows 7 kernel

Damien Aumaitre

Recon 2011



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Roadmap

1 Preamble
How it began
Designing a kernel debugger
Debugging Windows 7 x64

2 Loader

3 Debugger

D. Aumaitre Virtdbg 2/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

How it began

Study of Windows 7 x64 internals
PatchGuard
Code integrity
DRM

But how?
Static analysis: IDA, metasm
Dynamic analysis: need a kernel debugger, Which one?

D. Aumaitre Virtdbg 3/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Dynamic analysis: kernel debugger

Plenty of kernel debuggers
Local: SoftICE, Syser, HyperDbg. . .
Remote: WinDbg, Gdb, . . .

Which one to choose?
Need x64 support ⇐ gdb and windbg handle x64
Need to work without /DEBUG ⇐ gdb inside virtual machine?

D. Aumaitre Virtdbg 4/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Dynamic analysis: virtualisation

Lots of candidates
XEN, qemu, vmware, . . .
But kernel debugging not easy with gdb stub (too
process-centric), need to develop extensions to gdb protocol
Big softwares, hard to tinker with
Emulated devices may interfere with Windows 7 internals (not
sure if DRM stack will load under vmware)

Need a debugger!
Which handles x64
And work without /DEBUG boot flag
Using real hardware

D. Aumaitre Virtdbg 5/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

What kind of debugger?

Local debuggers

Pros
Need only one box
Easy to setup

Cons
Hard to extend
Lack basic features
(copy/paste ?)
Hard dependencies on
hardware like framebuffer,
keyboard for the GUI

Remote debuggers

Pros
Extendable easily with
plugins
Lot of code is deported,
easier to develop
Copy/paste :)

Cons
Requires two boxes
Need a remote stub for
handling communications

D. Aumaitre Virtdbg 6/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

How do they work?

They catch processor interrupts (often by hooking the IDT).

Example: IA-32

IDT (Interruption Descriptor Table) stores interruption vectors
INT1 is used by hardware breakpoints (DR registers) and
singlestep
INT3 is used by software breakpoints
INT14 (page fault) is used for catching memory breakpoints

D. Aumaitre Virtdbg 7/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

How do they work?

Two modes of operations
Debug mode: debugger waits for user interactions, other
processors are halted
Normal mode: the operating system runs as usual

Interactions
We switch to debug mode when receiving a breakin request:

To inspect processor registers
To inspect memory (virtual, physical, io)
To set breakpoints

Switch to normal mode with a continue request

D. Aumaitre Virtdbg 8/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Debugging Windows 7 x64

Several problems arise
How to execute kernel code when signed drivers are
mandatory?
How to gain control of the interruption vectors when
PatchGuard deny modifications of the IDT?
Patching the kernel is not possible with PatchGuard (bye bye
software breakpoints)
How to communicate with the debugger stub when the entire
OS is frozen?

D. Aumaitre Virtdbg 9/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Bypassing PatchGuard

PatchGuard
PatchGuard protects the kernel from malicious activities:

It prevents kernel code modification
Also prevents the modification of major structures (IDT,
SSDT, . . . )
Causes a blue screen if a modification is detected

Bypassing PatchGuard control of IDT
By using hardware assisted virtualization
We can control very precisely the execution of the target system
with a hypervisor (VMM)
We take control whenever an interruption occurs
Bonus: very stealth by design (cf. BluePill)

D. Aumaitre Virtdbg 10/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Communication with the hypervisor

Communication between debugger/debuggee

Usually kernel debuggers use a serial interface to
communicate; it works but it’s really slow :(
WinDbg uses FireWire for highspeed debugging, it’s
convenient and easy to setup

Using FireWire?

Speed is good (around 10Mb/s)
Widely deployed
But I don’t know FireWire. . .
Except for doing DMA attacks :-)

D. Aumaitre Virtdbg 11/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

DMA

Theory

Historically, all I/O came through the CPU. It’s slow.
DMA instead goes through a fast memory controller
Implemented as part of the PCI specification
Any device on the PCI / PCI Express bus can issue a
read/write DMA

A flawed idea?
The CPU and thus OS are entirely bypassed, cannot prevent
malicious DMA requests

D. Aumaitre Virtdbg 12/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

DMA

Consequences

Any device may read/write the physical memory
Operating system’s code and internal data can be modified
Security mechanisms rendered useless

Over-simplified example of DMA access

D. Aumaitre Virtdbg 13/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Communication with the hypervisor

Using DMA over FireWire?

No hardware specific code (only read/write in shared buffers)
libforensic1394 library allows easy development

bus = Bus.new()
bus.enable_sbp2
puts "waiting for dma access..."
sleep 5
devices = bus.devices
dev = devices[0]
dev.open
mem = FireWireMem.new(dev)
puts mem.hexdump(0x8000, 0x100)

Bonus: use DMA attacks to load unsigned kernel drivers

D. Aumaitre Virtdbg 14/42



Preamble
Loader

Debugger

How it began
Designing a kernel debugger
Debugging Windows 7 x64

Bypassing driver integrity verification

Signed drivers
Since Vista, drivers need to be signed on x64 editions of
Windows
This can be disabled but there are side effects (booting in test
signing mode)

Solution: Loading a driver using FireWire
Do not use the kernel code for loading drivers
We implement our own loader thus skipping the verification
process

D. Aumaitre Virtdbg 15/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

Roadmap

1 Preamble

2 Loader
Reconstructing the virtual memory
Rerouting execution flow
Loader

3 Debugger

D. Aumaitre Virtdbg 16/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

Loading the driver code

"Live" loader
Parses physical memory and reconstructs virtual/physical layer
Injects driver code in two stages (more on that later)
Loads driver code without using kernel API but custom
routines (hence bypassing signatures)

1 Copy binary sections, resolve imports and apply relocations
2 Redirect execution to driver entrypoint

D. Aumaitre Virtdbg 17/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

Injecting a driver with DMA requests

What do we need?
Reconstructing the virtual memory mapping
Space for storing our payload
Finding a function pointer

Difficulties
Can’t use kernel routines for loading the image
Need to not trigger PatchGuard

D. Aumaitre Virtdbg 18/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

x64 Virtual address translation

D. Aumaitre Virtdbg 19/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

Finding cr3

Classic method
Searching for the beginning of an EPROCESS structure
Use backup copy of cr3 in DirectoryTableBase field
Take forever. . . (around several minutes)
Can be at the end of the physical memory

struct _KPROCESS, 37 elements, 0x160 bytes
+0x000 Header : struct _DISPATCHER_HEADER, 29 elements, 0x18 bytes
+0x018 ProfileListHead : struct _LIST_ENTRY, 2 elements, 0x10 bytes
+0x028 DirectoryTableBase : Uint8B
...

D. Aumaitre Virtdbg 20/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

Finding cr3

Quicker method
Searching for the kernel beginning
Getting kernel symbols addresses using debug information
(PDB)
Get offset of the first KPCR structure (KiInitialPCR)
We find the values of all control registers included cr3

struct _KPCR, 27 elements, 0x4e80 bytes
+0x180 Prcb : struct _KPRCB, 242 elements, 0x4d00 bytes

+0x040 ProcessorState : struct _KPROCESSOR_STATE, 2 elements, 0x5b0 bytes
+0x000 SpecialRegisters : struct _KSPECIAL_REGISTERS, 27 elements, 0xd8 bytes

+0x000 Cr0 : Uint8B
+0x008 Cr2 : Uint8B
+0x010 Cr3 : Uint8B
...

D. Aumaitre Virtdbg 21/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

What’s next?

We can interpret any address in virtual memory
In order to execute arbitrary kernel code we need a pointer to
overwrite

Which pointer?
Can’t touch IDT or SSDT or kernel code due to PatchGuard
Need something stealthier, often called and not checked by
PatchGuard!

Solution
Using function pointers located in OBJECT_TYPE_INITIALIZER
structure a

aMust read: Skape and Skywing, “A catalog of Windows Local Kernel-mode
Backdoor Techniques”, 2007, Uninformed Vol. 8

D. Aumaitre Virtdbg 22/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

OBJECT_TYPE_INITIALIZER

Each object is categorized by an object type represented by a
OBJECT_TYPE structure
struct _OBJECT_TYPE, 12 elements, 0xd0 bytes

+0x000 TypeList : struct _LIST_ENTRY, 2 elements, 0x10 bytes
+0x010 Name : struct _UNICODE_STRING, 3 elements, 0x10 bytes
+0x020 DefaultObject : Ptr64 to Void
+0x028 Index : UChar
...
+0x040 TypeInfo : struct _OBJECT_TYPE_INITIALIZER, 25 elements, 0x70 bytes
...

OBJECT_TYPE structure contains a nested structure named
OBJECT_TYPE_INITIALIZER

D. Aumaitre Virtdbg 23/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

OBJECT_TYPE_INITIALIZER

Several fields of the OBJECT_TYPE_INITIALIZER structure are
functions pointers
struct _OBJECT_TYPE_INITIALIZER, 25 elements, 0x70 bytes

...
+0x030 DumpProcedure : Ptr64 to void
+0x038 OpenProcedure : Ptr64 to long
+0x040 CloseProcedure : Ptr64 to void
+0x048 DeleteProcedure : Ptr64 to void
+0x050 ParseProcedure : Ptr64 to long
+0x058 SecurityProcedure : Ptr64 to long
+0x060 QueryNameProcedure : Ptr64 to long
+0x068 OkayToCloseProcedure : Ptr64 to unsigned char

For example, OpenProcedure will point to
nt!PspOpenProcess for a Process

D. Aumaitre Virtdbg 24/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

Finding OBJECT_TYPE structures

Finding non-exported kernel symbols
Several non-exported kernel symbols are present in the
KDDEBUGGER_DATA64 structure a b

defined in the Debugging Tools For Windows SDK header file
wdbgexts.h
This structure is pointed by the KdDebuggerDataBlock kernel
global variable
typedef struct _KDDEBUGGER_DATA64 {

DBGKD_DEBUG_DATA_HEADER64 Header;
ULONG64 KernBase;
...
ULONG64 PsLoadedModuleList;
...
ULONG64 ObpTypeObjectType;
...

ahttp://uninformed.org/index.cgi?v=4&a=2&p=5
bhttp://web.archive.org/web/20061110120809/http:

//www.rootkit.com/newsread.php?newsid=153

D. Aumaitre Virtdbg 25/42

http://uninformed.org/index.cgi?v=4&a=2&p=5
 http://web.archive.org/web/20061110120809/http://www.rootkit.com/newsread.php?newsid=153
 http://web.archive.org/web/20061110120809/http://www.rootkit.com/newsread.php?newsid=153


Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

Loader

The hypervisor code is implemented as a WDK driver
We inject the hypervisor with several steps:

1 We inject a stager responsible for allocating the memory used
for storing the code of the hypervisor (for example, first
memory page of a already loaded driver or at the end of the
KUSER_SHARED_DATA structure)

2 Once the memory is allocated, we map the driver section by
section

3 Then we resolve imports and apply relocations

Signed drivers
Effectively bypassing signed driver mechanism

D. Aumaitre Virtdbg 26/42



Preamble
Loader

Debugger

Reconstructing the virtual memory
Rerouting execution flow
Loader

What’s next?

We can load an arbitrary driver in the target OS
What kind of driver?

Hypervisor
Virtualize the operating system without rebooting (ala
BluePill)
Requires Intel VMX hardware virtualization features (no AMD
support)

D. Aumaitre Virtdbg 27/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Roadmap

1 Preamble

2 Loader

3 Debugger
Hypervisor
Using an hypervisor for debugging
Communication
Implementation

D. Aumaitre Virtdbg 28/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Specifications

Constraints
Minimal impact on the system (don’t use OS functions (if possible)
and no modifications of kernel structures

Features
Stealth by design
Heavy treatment deported on the client
Basic primitives (for the moment):

Read/write memory
Read/write registers
Singlestepping execution
Stopping and resuming execution

D. Aumaitre Virtdbg 29/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

VMX (Virtual Machines eXtensions)

Two operating modes
VMX root hypervisor mode

VMX non-root guest mode

Remarks
By design we can’t tell which mode is active
Switching between these modes is called VM-Entry (VMM ⇒
Guest) and VM-Exit (Guest ⇒ VMM)
Processor behavior is modified in VMX non-root mode: some
events cause transitions (access to control or debug registers,
exceptions etc.)

D. Aumaitre Virtdbg 30/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

VMX (Virtual Machines eXtensions)

Virtualization setup
VMX mode is activated by the VMXON instruction
Virtual machines are launched with the VMLAUNCH instruction
Each VM-Exit calls the hypervisor handler
The hypervisor resume guest execution with the VMRESUME
instruction
VMX mode is deactivated by the VMXOFF instruction

VMCS (Virtual Machine Control Structure)

Controls transitions between VMX root and VMX non-root
Manipulated by new instructions: (VMPTRST, VMPTRLD,
VMREAD, VMWRITE and VMCLEAR)

D. Aumaitre Virtdbg 31/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Transitions

VM-root
(hypervisor)

VM-non-root
(virtual machine aka target)

HandleVmExit :
- CPUID ?
- MSR_READ
- MSR_WRITE
- CR_ACCESS
- DR_ACCESS
- EXCEPTION

VM-Exit

VM-Entryvmresume

_ExitHandler mov cr3, rax

D. Aumaitre Virtdbg 32/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Using an hypervisor for debugging

Debugger primitives
Break or continue target execution
Inspect registers
Inspect memory
Singlestep through code

D. Aumaitre Virtdbg 33/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Using an hypervisor for debugging

Break/Continue

VM-Exit occurs when context is changed (mov cr3, rax for example)
hence providing us with a regular callback for knowing if the user asked
for system interactions

If we need to switch to debug mode:
Hypervisor stops the other processors
And enters a loop waiting for orders

If we don’t: just resume target execution

Inspecting registers
A part of the context is saved in the VMCS
We save the rest before entering in VMX root mode
We restore the context before executing the VMRESUME instruction

D. Aumaitre Virtdbg 34/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Using an hypervisor for debugging

Inspecting memory
Must be careful, no page fault can occur in the VMX-root
handler!
We check the PTE (Page Table Entry) in order to validate the
address provided by the client
Manipulating physical memory (no copy-on-write :-s)

Single Step
Easy because we control the RFLAGS register and can intercept
INT1

D. Aumaitre Virtdbg 35/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Communication

Shared physical memory
Use libforensic1394 a for handling DMA setup
Contains the necessary information for synchronising and
exchanging data between the hypervisor and the client
Two areas are for exchanging requests ("uplink" and
"downlink")

ahttps://freddie.witherden.org/tools/libforensic1394/

D. Aumaitre Virtdbg 36/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Virtdbg

What is it?
Hypervisor (like BluePill) to control the target
Uses FireWire DMA requests for loading the VMM and giving
orders to the debugger
Client GUI leveraging the Metasm framework
Designed to debug Windows 7 x64 “on the fly” (i.e. without
booting with /DEBUG)

Uses
Analyze hardware specific software like DRM
Malware analysis (TLD4)
Debugging Windows internals (PatchGuard, code integrity)

D. Aumaitre Virtdbg 37/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

First implementation (march 2010)

2 FPGA: one for handling
DMA requests (Cardbus),
the other for handling
client requests (USB)
Custom DMA engine in
VHDL
Driver for USB FPGA
works only on Windows
XP :(

D. Aumaitre Virtdbg 38/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Second implementation

Drops FPGA and uses only a FireWire cable for communication
Leverages the metasm framework

DEMO

D. Aumaitre Virtdbg 39/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Conclusion

Why this project?

No real kernel debuggers for Windows 7 x64 (except WinDbg)
They are very intrusive and need OS cooperation

Future work
Porting the hypervisor to support 32-bit Windows
Support of AMD processors (Phenom)
Add more primitives and events (leveraging all possibilities of
hardware virtualization features)
Increase furtivity and anti-debug resilience
Reduce operating system dependancy
Support for VT-d Intel family of processors (currently only VT-x)
Check out ramooflaxa: preboot hypervisor

ahttps://github.com/sduverger/ramooflax

D. Aumaitre Virtdbg 40/42

https://github.com/sduverger/ramooflax


Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Thanks and credits

Joanna Rutkowska for releasing BluePill (great source of
information on hypervisors)
Freddie Witherden 1, author of libforensic1394 (much better
than previous bindings)
Yoann Guillot for the Metasm framework 2

My colleagues at SOGETI/ESEC Lab (especially Christophe
Devine)

1https://freddie.witherden.org/tools/libforensic1394/
2http://metasm.cr0.org

D. Aumaitre Virtdbg 41/42



Preamble
Loader

Debugger

Hypervisor
Using an hypervisor for debugging
Communication
Implementation

Q&A

Thank you for your attention!
Give it a try! http://code.google.com/p/virtdbg
Questions?
Contact: damien (at) security-labs.org

D. Aumaitre Virtdbg 42/42

http://code.google.com/p/virtdbg

	Preamble
	How it began
	Designing a kernel debugger
	Debugging Windows 7 x64

	Loader
	Reconstructing the virtual memory
	Rerouting execution flow
	Loader

	Debugger
	Hypervisor
	Using an hypervisor for debugging
	Communication
	Implementation


