Kernel-based monitoring on Windows (32/64 bit)

by

Florian Rienhardt

peanut@bitnuts.de

Abstract

Since malware works fast and quiet there is demand to analyze, track and
block such scrap at some central point. There is nothing as central as the ker-
nel of an operating system. This white paper describes how to monitor and
protect your Windows-based system by using a minifilter driver intercept-
ing IRP_M]-Functions in its PreOperation-Callback. The white paper also
discusses some basic analyzing and protection drivers I have written in the
past. By following Microsofts’ recommendation and guidelines for multi
platform compatible driver development, the resulting drivers are called ker-
nel minifilter drivers that are reliable and compatible with all modern ver-
sions of Microsoft Windows (2000, XP, Vista, Server, 7 and 8) — including
their 64 bit versions. Minifilter drivers are powerful tools to track and miti-
gate against many kinds of malware out there. Once you have build up your
own minifilter drivers they are like a Swiss Army Knife. I highly encourage
everyone in the Windows based security scene to have a deep look into the

powerful stuff one can achieve with minifilter drivers.

last updated 2015/02/12

Disclaimer

The information in this white paper is believed to be correct at the time of
writing and publishing based on my currently available information. Use of
the information constitutes acceptance for use in an so called AS 1S condi-
tion. There are no warranties, implied or express, with regard to this infor-
mation. In no event shall the author be liable for any direct or indirect dam-
ages whatsoever arising out of or in connection with the use or spread of this
information. Any use of this information is at the reader’s own risk!

powered by

excubits.com

Excubits UG (haftungsbeschrinkt)
Simple. Secure. Excubits.

last updated 2015/02/12

http://excubits.com

Table of contents

1 INEPOAUCHION. ...ttt bbb bbb s ssassessasanes 1
2 Kernel-based monitoring by using a minifilter driver..........eeevnrcnccnnnnnnnnes 2
3 How to implement a monitoring minifilter driver..........nieivnnicnccnnnnnnnnes 5
4 EXample dIiVersiiiiitiiiiiiincsisnssesssssssesssssssssssessssssssessss 7
4.1 Monitoring IRP_M]J_CREATEccccooviniiiiiic e 7
4.2 A minifilter that monitors executables written on your diskccccoeiiiiines 8
4.3 Tracking executables on WINdOWScccceciviiininiiiniiiniiiincccececeenees 9
4.4 Tuersteher Light: A Path Based Application Whitelisting Filter Driver 10
4.4.1 Configurate and start up the driver...........cccoecniiiniiniincncee, 11
4.4.2 Tuersteher Light For WIindows XPcccccccccviiiniinniniiiiiccicceeeen 13

4.5 Building a totally locked down Windows for POS-, ATM- and kiosk-mode-Env-
18T 8 1<) g1 =SOSR 14

5 Catch (targeted) malware and other cyber attacks........cocoeveeuvrcrurcrenicsncresncrcsnsacnes 16
6 DIaWDACKS ...ttt se s aees 18
7 CONCIUSION .ttt sbs s s bbb s s bbb s s s ene 20

1 Introduction

These days malware often uses a zero-day exploit within commonly used applica-
tions like browsers, multimedia- or portable document viewers to bootstrap the proc-
ess of infecting your system with a trojan or bot for example. To avoid DEP and all
the other security stuff modern operating systems like Microsoft Windows come
along, most malware uses ROP-like (return oriented programming) approaches to ex-
ecute their evil code even if common protection mechanisms are enabled. In most
cases the exploit starts or acts as a dropper that downloads and executes the intended
malware. There is not much transient code executed in first instance. Authors of mal-
ware often use some general checks against virtual machines, anti virus software and
debuggers to avoid getting discovered — bad news if you want to quickly analyze
such smuck, because if you run such detection software, modern malware just de-
stroys themselves and you will never see what such malware would write or execute
on your system. You only get the exploit or a dropper that must be analyzed (de-
crypted, disassembled and debugged) to find out what such a beast really copies to
your system’s hard disk drive and executes then.

In most cases these droppers are not very interesting, because a lot of web sites are
currently hit by already known exploit kits that just download and execute the mali-
cious code using an also well known (or a polymorphic version of such a) dropper —
thus what we are really interested in, is the malicious code and its behavior on your
system; meaning what will be downloaded and written to your machine. Since mal-
ware often works fast and quiet there is demand to analyze such programs at some
central point. There is nothing as central as the kernel of an operating system.

In the past years I tried different approaches to analyze malware fast and without the
need to fully debug or disassemble such programs. Some of my implemented solu-
tions used user mode hooking' in the same fashion as used in the Google Chrome
browser’s sandbox or like described in Detours’. Other approaches used kernel mode
hacks like the well known SSDT-hooks. There are pros and cons to use one or the oth-
er, but at the end I was not satisfied with all these solutions, because most of them

are a bit cracky-hacky as I am calling it.

Well, I started thinking about what and how Microsoft would (and/or will) imple-
ment central monitoring stuff in their operating systems. This white paper summa-
rizes the stuff I have found and gives you a possible solution. What is outlined here is
no secret, nor is it something totally new, but surfing around the web I did not find a

Also known as hot-patching or API re-direction.

Galen Hunt and Doug Brubacher, "Detours: Binary Interception of Win32 Function", http://re-
search.microsoft.com/en-us/projects/detours/

general white paper or tutorial about kernel-based monitoring so I decided to write
one and hopefully make your life a bit easier if you want to start writing some ker-
nel-based monitoring stuff for Windows.

2 Kernel-based monitoring by using a minifilter driver

Back in the days where Windows 2000 and XP were wide spread there were com-
monly used techniques to monitor and detect file creation, the creation of registry set-
tings and even the execution of processes, drivers, etc’. A lot of monitoring tools and
experts intercepted kernel functions to monitor on a system wide basis.

Most of these drivers hooked the System Service Table'. A so called kernel hacker’
had just to launch such a SSDT hooking driver that controls vital parts of the kernel
and was likely able to monitor the system using a central anchor (the kernel API rep-
resented through the SSDT). This technique seems to be some kind of "silver bullet"
because it runs in privileged kernel mode having access to nearly all objects of the
operating system and cannot be fooled by classic API-redirection/hooking techniques
that take place in user mode. Unfortunately hooking vital kernel functions is not the
appropriate (and officially documented) way implementing reliable software today.
It was and is not only used by hackers but also by authors of rootkits and other mali-
cious programs; obviously, redirecting vital parts of the kernel perfectly suits the
need of malware authors trying to hide their actions or to control your operating sys-
tem’. Understandably Microsoft does not recommend ISVs using this technique, be-
cause the functionality of (undocumented) kernel functions may change during the
life cycle of a product like Microsoft Windows (think about a service pack for exam-
ple, kernel updates, etc.) and patching vital kernel functions is not only critical to sys-
tem stability it is also critical to your system’s security’. Since Microsoft introduced its
64 bit versions of Windows, including additional protection mechanisms like only
loading signed drivers and its Kernel Patch Protection®, it is even not possible to do
such hacks on 64 bit Versions of Windows without running into a nasty BSOD. This

’ E.g. see Bassov A., (2005): "Hooking the native API and controlling process creation on a sys-

tem-wide basis", The Code Project http://www.codeproject.com/system/soviet_protector.asp; Or
Mark Russinovich’s monitoring tools like TokenMon etc. on http://www.sysinternals.com.

For more details on SSDT-hooking a good reference is Hoglund G., Butler J., (2005): "Rootkits -
Subverting the Windows Kernel", Addison-Wesley/Pearson Education, New Jersey

The name kernel hacker does not name a shady hacker, I just mean enthusiasts like me “hacking
the kernel”.

For more details I highly recommend the Book of Hoglund G., Butler J., (2005): "Rootkits - Sub-
verting the Windows Kernel".

E.g. see http://www.matousec.com/info/articles/plague-in-security-software-drivers.php for
more details on this topic.

http://en.wikipedia.org/wiki/Kernel_Patch_Protection

is the most prominent example why you should NOT use such unofficial hacks to
build reliable software on. If Microsoft decides to change parts of its kernel architec-
ture (like in 64bit versions of Microsoft Windows) your driver crashes the whole sys-
tem. Well, there are ways to bypass Kernel Patch Protection, but it seems to be kind
of difficult and hacky’.

Question: Is it still possible to monitor on a system wide basis without hooking na-
tive kernel API functions? Yes indeed. Microsoft highly recommends not hooking the
native API in software and suggests ISVs to use so called minifilter drivers instead.
All modern malware scanners use minifilter drivers and do not hook the native ker-
nel API anymore. There are also a lot of specialized security products out there that
are able to block malicious files from getting written to your disk or getting exe-
cuted".

In "Kernel Data and Filtering Support" Microsoft explains how things should be done
in a clean and reliable way without hacking the kernel''. As Microsoft notes, several
ISVs have requested the ability to monitor (or block) several objects like processes,
drivers or files without hooking native API functions. Microsoft concludes that there
still exist (or existed) well known and supported functionality that could be used in-
stead, to achieve the desired behavior. Microsoft states that in particular, a file system
minifilter can be utilized such, that it can monitor the creation or change of files,
loading of modules etc. in both user mode and kernel mode. Following these basic
guidelines a kernel hacker ends up in a driver that is reliable and compatible with all

See http://uninformed.org/index.cgi?v=3&a=3&p=3 for more details.

The following list just gives you some examples of products that support global filtering in
some fashion:

N Microsoft AppLocker
http://technet.microsoft.com/en-en/library/dd723678(v=ws.10).aspx
° TripWire

http://www.tripwire.com/it-security-software/security-configuration-manage-
ment/file-integrity-monitoring/

N Bit9 Parity Suite
https://www.bit9.com/products/bit9-parity-suite.php

. CoreTrace Bouncer
http://www.coretrace.com/products-2/bouncer-overview

. Lumension Application Control
http://www.lumension.com/application-control-software.aspx

° McAfee Application Control

http://www.mcafee.com/de/products/application-control.aspx
. Application Access Control

http://www.tricerat.com

! For more details search for “Kernel Data and Filtering Support” available at http://down-

load.microsoft.com/download/4/4/b/44bb7147-f058-4002-9ab2-ed22870e3fe9/Ker-
nal%20Data%20and %20Filtering %20Support%20for%20Windows%20Server 7%202008.doc

modern versions of Microsoft Windows (2000, XP, Vista, Server, 7 and 8) — including
their 64 bit versions.

Microsoft describes"” mini filters like:

[...] “A file system filter driver intercepts requests targeted at a file system
or another file system filter driver. By intercepting the request before it
reaches its intended target, the filter driver can extend or replace functional-
ity provided by the original target of the request. Examples of file system fil-
ter drivers include anti-virus filters, backup agents, and encryption prod-
ucts. To develop file systems and file system filter drivers, use the IFS (In-
stallable File System) Kit, which is provided with the Windows Driver Kit
(WDK).” [...] “The Filter Manager is a file system filter driver provided by
Microsoft that simplifies the development of third-party filter drivers and
solves many of the problems with the existing legacy filter driver model,
such as the ability to control load order through an assigned altitude. A fil-
ter driver developed to the Filter Manager model is called a minifilter. Every
minifilter driver has an assigned altitude, which is a unique identifier that
determines where the minifilter is loaded relative to other minifilters in the
/O stack. Altitudes are allocated and managed by Microsoft.” [...]

The minifilter support is documented at msdn.microsoft.com, especially in the part
describing the Driver Develompent Kit (DDK)".

Microsoft published great examples on how to write file system drivers that show

how an anti virus solution could be implemented . I highly recommend reading the

DDK documentation, the MSDN about filter driver development and do not miss to

check out Microsoft’s great examples shipped with the WDK?". If your are interested
in analyzing drivers I highly recommend to study the drivers written for the Honey-

12

13

14

15

http://msdn.microsoft.com/de-de/windows/hardware/gg462968

http://download.microsoft.com/download/e/b/a/ebal050f-a31d-436b-9281-92cdfeae4b45/Filter-
DriverDeveloperGuide.doc

PassThrough File System Minifilter Driver
http://code.msdn.microsoft.com/windowshardware/passThrough-File-System-f9975611
Scanner File System Minifilter Driver
http://code.msdn.microsoft.com/windowshardware/Scanner-File-System-426c8cbe
Windows 8 Driver Samples
http://code.msdn.microsoft.com/windowshardware/Windows-8-Driver-Samples-
5elaa62e/view/SamplePack/4?sortBy=Popularity

http://msdn.microsoft.com/en-us/windows/hardware/gg487428
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=11800

net project'’. They give you great real live code regarding detection of potential mal-
ware.

3 How to implement a monitoring minifilter driver

So what to do folks? Well, for me Microsofts' suggestions in "Kernel Data and Filter-
ing Support” sound something like: "Write a minifilter driver that..."

i) intercepts a IRP_M]_-Function in its PreOperation—callback”,

ii) analyze and check its parameter block'"® and monitor (e.g. via
DbgPrint()), adjust or even block such information.

Again and in short prose we are using a minifilter driver intercepting a IRP_M]-Func-
tion in its PreOperation-Callback” and check its FLT_PARAMETERS parameter
block™. E.g. Such IRP_M]J-Functions could be

e IRP_MJ_CREATE
e JRP_MJ_CREATE_NAMED_PIPE

e IRP_MJ_READ

10 See https://projects.honeynet.org/svn/capture-hpc/capture-hpc/tags/2.5/capture-client/Kernel-

Drivers/CaptureKernelDrivers/FileMonitor/CaptureFileMonitor.c for example. It gives you a

great overview on IRP_M]J-filtering on a real world scenario.

17 . . g . . .
Microsoft states “A file system minifilter driver uses one or more preoperation callback routines

to filter I/O operations. A minifilter driver registers a preoperation callback routine for a particu-
lar type of I/O operation by storing the callback routine's entry point in the OperationRegistra-
tion member of the FLT_REGISTRATION structure. The minifilter driver passes this member as
a parameter to FltRegisterFilter in its DriverEntry routine. Minifilter drivers receive only those
types of I/O operations for which they have registered a preoperation or postoperation callback
routine.” (for more details about PreOperation-Callbacks and the whole topic navigate to:

http://msdn.microsoft.com/en-us/library/windows/hardware/{f557336(v=vs.85).aspx)

' Meaning you have to check out "Data->lopb->Parameters]...]"

v Additional note: You can also use its PostOperation-Callback, whether kind of information of

the desired object (file, process, section or what ever) you are interested in. In some situations
you get much more information in the PostOperation-Callback because generic I/O related stuff
was done at this point to give you more details on the operation. As Microsoft states “When the
filter manager calls a minifilter driver's postoperation callback routine for a given I/O operation,
the minifilter driver temporarily controls the I/O operation.” (see: http://msdn.micro-
soft.com/en-us/library/windows/hardware/ff557325(v=VS.85).aspx). And you can still cancel a
successful CREATE operation in a PostOperation-Callback anyway.

FLT_PARAMETERS is described at http://msdn.microsoft.com/en-us/library/windows/hard-
ware/{f544684(v=vs.85).aspx

20

e JRP_MJ_WRITE

e IRP_MJ_SET _VOLUME_INFORMATION
e JRP_MJ_DIRECTORY_CONTROL

e IRP_MJ_FILE_SYSTEM_CONTROL
e IRP_MJ_NETWORK_QUERY_OPEN
e IRP_MJ_MDL_READ

e IRP_MJ_MDL_READ_COMPLETE

e IRP_MJ_PREPARE_MDL_WRITE

e JRP_MJ_MDL_WRITE_COMPLETE
e IRP_MJ_VOLUME_MOUNT

e JRP_MJ_VOLUME_DISMOUNT

for more see Microsoft’s WDK driver examples.

To fire up your own project I recommend to start up with one of Microsoft’s filter
driver samples like the scanner demo that demonstrates how to implement a basic vi-
rus- or content scanner.

Another good resource is the New Zealand Honeynet Alliance. I highly recommend
to check out Ramon Steenson’s and Christian Seifert’s source code of CaptureFileMo-
nitor”.

If you are interested in module blocking as described in Microsoft’s papers™ you
should intercept IRP_M]J_ACQUIRE_FOR_SECTION_SYNCHRONIZATION in or-
der to block images from loading. You could modify the TargetFileObject in the
FLT_CALLBACK_DATA structure®.

Access to files can be monitored by setting a callback for IRP_M]_CREATE. Use
FltGetFileNamelnformation() with parameter Data and FltParseFileNameInforma-

2 Go to https://projects.honeynet.org or just google for CaptureFileMonitor.c

2 See M. Corporation. Kernel data and filtering support for Vista SP1 / windows Server 2008.

MSDN or CodeShield: Towards Personalized Application Whitelisting (http://www.cs.pur-

due.edu/homes/gates2/publications/acsac2012-codeshield.pdf)

2 More details are available at http://www.winvistatips.com/modifying-targetfileobject-ac-

quire_for_section_synch-t196674.html. To build up a powerful module filtering driver I highly
recommend to check on IRP_M]_ACQUIRE_FOR_SECTION_SYNCHRONIZATION.

tion to receive the originated filename. Just have a look at Microsoft’s minifilter driv-
er passThrough bundled with the WDK. This driver sets callbacks for all IRP_M]-
Calls, so you can simply adjust this driver for your needs.

4 Example drivers

In the following sections I shortly discuss some basic drivers I have written in the
past. I will not go into all the details, if your are interested in more, feel free and con-
tact me. If you want to develop your own monitoring drivers, a good point to start is
to study Microsoft’s DDK example drivers. There are a lot of minifilter examples you
can dig into. Some of the drivers, e.g. the Scanner-Demo, already implement some
basic analyzing minifilter that can be expanded by you.

BEWARE!

All drivers are for educational and test purposes only. They are just demon-
stration drivers in a pre-alpha or beta stage and might contain bugs that
lead to system crashes and other damages to your system. The drivers are
not digitally signed so I do not recommend to install the drivers in any pro-
duction system. Use the drivers is at your own risk!

Some of my drivers are marketed and distributed by Excubits UG (haftungs-
beschrankt). If you are intereseted in aquiring a license, visit http://excubits.com.

The drivers are not digitally signed, hence you cannot run them on 64-bit version of
Windows without a tweak (or work around). There you must boot into Testsigning
Mode and digitally sign the drivers by yourself or you start up Windows without
checking code signatures. To do the latter just press F8 while rebooting your system.
On Windows 8 the classic F8-Bootmenu must be enabled by executing the following
commands in an console:

bcdedit /set bootmenupolicy legacy
bbcdedit /timeout 12

4.1 Monitoring IRP_M]J_CREATE

While having some time off duty winter 2011/2012 I started analyzing Microsoft's
"heavy duty" passThrough DDK-example driver and tried to build a simple minifil-
ter driver that just checks for IRP_M]_CREATE in its preoperation callback. The driv-
er determinates the originating/correspondig filename for that IRP-call by using
FltGetFileNamelnformation. The resulting string will be printed via DbgPrint. You

http://excubits.com
http://excubits.com

can use DebugView (download at http://technet.microsoft.com/en-us/sysinter-
nals/bb896647) to trace what this demonstration driver is doing.

4.2 A minifilter that monitors executables written on your disk

Thinking about different approaches to monitor malware while they are installing
their evil code on your machine I ended up in a monitoring minifilter driver that
might help you out analyzing potential zero-days and other malicious stuff on your
forensics machine.

MZWriteScanner is a simple minifilter that intercepts IRP_M]_CREATE,
IRP_M]J_CLEANUP and IRP_M]J_WRITE (and some other) to track what files should
(and will) be written on your disk. The driver checks if a file contains the magic bytes
for an executable, namely the string 'MZ'/'ZM' at offset (0) of the file. If this is the case
MZWriteScanner outputs the filename via DbgPrint and writes the path and filename
to %SystemRoot% \ mzwritescanner.log. Well, the approach seems to be a bit cheesy
on the first view, but should work for many malware executables that hit your face
through drive-by exploit kits.

Since version 2.1 the driver needs a configuration file at %SystemRoot% \ mzwrites-
canner.ini where you are able to enable the so called lethal mode which enables you
to deny execution of newly written executable files and to whitelist paths or files that
are allowed to contain newly written executables without blocking them. The latter
might be helpful in automated scenarios where you might want to allow updating
system executables (e.g. the executables of patches, updates etc.) or anti-virus tools.
But be careful with what you gonna whitelist, because whitelisting the wrong path or
tile might open the doors for potential malware -- keep that in mind!

The whitelist in %SystemRoot% \ mzwritescanner.ini *must* be in UNICODE file for-
mat and must contain at least one line enabling or disabling the blocking mode:

[[LETHAL]

to enable it, or

[[#LETHAL]

to disable it.

If you would like to whitelist some paths or files, just add their path and/or name in a
line followed by an asterisks before the new line. See the following example:

[LETHAL]

whitelist*

\Device\HarddiskVolume2\ProgramData\Microsoft\Windows Defender\Definition Updates*
\Device\HarddiskVolume2\Windows\SoftwareDistribution\Download*
\Device\HarddiskVolume2\Users\USER\Desktop\Dbgview.exe*
\Device\HarddiskVolume2\Windows\System32\Drivers\Dbgv.sys*

To install the driver just go into the binaries path regarding your version of Windows
(Windows x86/x64 Vista, 7 and 8). Then right-select the .inf and hit "install". Then run
one of the cmd-scripts to start, stop, restart and uninstall the driver. Do not forget to
tire up DbgView to peek the messages the driver prints out. Make sure to disable
driver signing on 64-bit versions of Windows, the driver was not signed yet.

4.3 Tracking executables on Windows

On Windows there is no way to directly monitor and track what executables (exe, dll,
sys, msi, ...) are gonna be on the run, meaning: when is an executable image loaded
for execution into memory. If you are a malware analyst or just interested in what ex-
ecutables are loaded into memory while your Windows machine was turned on, my
new kernel mode driver ExecutableTracker might give you a deeper look inside.

ExecutableTracker™ is just a simple minifilter driver that logs any executables
mapped into memory for execution. You can keep track of the logged executables by
using Dbgview” (enable 'Capture Kernel', 'Enable Verbose Kernel Output' and 'Pass-
Through'). ExecutableTracker determinates the corresponding file and calculates a
SHA-256 digest of the file, thus you can use the digest to fire it against a malware da-
tabase for example. A typical log of Dbgview looks like:

iy

Fle Edt Cophre Opbons Compuber Heb
sHdd | &2~ A GBT| 7| &

| Time [pebug Print]
254 33.96374564 E s HA-256-Digest: 1206634287005e69fha13183£500T71067450471308£0152008337bab?2eabETE
255 33.98608780 i \Device\HarddiskVelume2\Windewa\SyaWOWE4\nlaapi.dll

256 33.88610687 HA-256-Digest: 3a37£cS03dI220d0214TIaecalBE427 3025180036018 e409812 745041380757
257 24.00303753 ile: \Device\HarddiskVolume?\Windows\SyaWOWE4\ IFHLEAPT.DLL

256-Digest: 26T98756976ce53251ac342b966be0IfIael794b4965c452E5d0be330 1896910
ile: \Device\HarddiskVolume2\Windows\SyaWOWE4\winnsi.dll

256-Dageat: 1E37275202628d43320867a2bfecidalS491730c4bT4225L7c0d7e140b01ac3c
t \Deviee\HarddiskVelumeZ\Windews\SysWOWE4\dhepeaves, dll

256-Digesat: e22408bid2ede2fA%e6B6a4fdod4057be2 ThaEd050e9che BOLOL DAY T200c1d
ile: ‘\Device\MarddiskVolume2\Windows\SyawOWes\dhcpoave.dll

256-Digest: 28610b4bl6610Le2 2e9a50477a62605481e945843a814955a08412454030403
i \Device'\HarddiskVolume2\WindowsSyaWOWE4\ RudioSes . d11

256-Digeat: cfc3465Ld6CcSTOS05C2240926449357acd0lblE43ed25bscooelns33403485c
: \Device\HarddiskVolumeZ\Windows\SyaWOWS4\MHDevAPI. a1l

10e3c6336TARA20Tbaa TOE2BL 630852043 TRAIE TdTadaTacedl
e 2\ Windows\ SyaWoWes\ propsys.dll

258 34.00311279
289 34.01493454
260 34.01493835
261 34.03215408
262 34.0321693%
263 24.05509186 E
264 34.05510712
265 34.07800674
266 34.07302963
267 34.09014130
268 34.09015656
269 34.1393890% E
270 34,13939667
271 34.17335129
272 34.17337026
273 34.27977753
274 34.279788097
275 34.30870984
276 34.30572128 E
277 ¥4.72964478
278 34.729888240 B MA-256-Digest: £12bd7deldfbdifdbdEackdTallsEsdinclss42dss0d29EhdblelfbToclalie?
279 34.93752670 E ableTracker!File: ‘Device\HarddiskVolume2\Windows\SysWOWed\Wpe.dll

280 34.93753815 ExecutableTracker!3HR-256-Digeat: c79db405d588cTTedacaeibc2 608021 3beebil4ctalidaldrBa03dlicd fbichel

< | .ﬁé

ile: ‘\Device\Harddisiky
256-Dageat: HCdICIERIDISTeIdEIRTISGr1dIS6fhe3leeTRd1699ddeldasIlfvecddidan
ile: \Device\HarddiskVolumed\Windows\SyaWOWEL \ gpapi.dll

HMA-256-Digest: cEITE1EE3ca963a1335TE0dabbholeloice fOBEETINALS 25035801 Zedd0atSE
ile: \Device\HarddiskVolumeZ\Windows\SysWwowWs4\mawsock.dll

HA-256-Digeat: 4effdieacchlefTdcd2cafdidc2dialalddiisblablialsic3iZeadicéTdc2ifa
1le: \Device\Marddi=kVolume2\Windows) SyaWoKes \ wanips . d11

24 ExecutableTracker is some sort of cleanroom-design implementation of an executable tracker
that bases on information gained from the CodeShield architecture paper (http://www.cs.pur-
due.edu/homes/gates2/publications/acsac2012-codeshield.pdf).

25

Download Dbgview at http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

ExecutableTracker does not block any executable image nor is it some kind of protec-
tion driver, so beware of what you gonna execute on your machine. The driver just
monitors what executables are loaded and will be executed on your machine. To de-
tect (and block) malware there is more to do, ExecutableTracker is just a stripped
down version of a driver that ships with the ExploitBuster framework and Tiirsteher,
that we currently use to detect malware on our forensic machines. We will not pub-
lish such drivers for free right now and think you have sympathy for this decision.

4.4 Tuersteher Light: A Path Based Application Whitelisting Filter Driver

AppLocker's capatilities to whitelist and block executables, libraries and scripts with
the comfort of group policies are great but it is pain if you need to use AppLocker as
a helping hand to monitor, track and block potential malicious code in forensic sce-
narios. On the other hand AppLocker is only available in Enterprise versions of Mi-
crosoft Windows, thus not within reach to the majority of Windows users.

Having developed several minifilter drivers I was able to build up a light and easy to
use filter driver acting like AppLocker helping you to monitor and block executables
(exe, dll, sys, ocx...) that were not started from a trusted path. Components of this
driver are part of our malware detection framework ExploitBuster and Tuersteher,
but Tuersteher Light does not contain all the sticky icky features I have build into our
heavy weight versions.

As known from AppLocker, in Tuersteher Light you also simply specify a whitelist of
trusted paths and fire up the driver. The driver then checks the corresponding path
and filename against a list before allowing it to be read into memory for execution.
Thus the driver is able to block malicious code started from external USB drives, e-
mail attachments, your Internet browser's cache and many more. It is no silver bullet
against all attacks with regards to 0-days leading to privilege escalation, in-memory
transient malware that only resists in the exploit’s allocated memory portion but
most exploits we were investigating in 2012/2013 initially stored their malicious exe-
cutable modules somewhere into the user’s folder space or Windows’s system paths
and hence could effectively being blocked by the driver’s approach using a carefully
defined white- and blacklist of paths (or files). There are limits, but as far as I know
there does not exist any endpoint security solution out there, that faces all possible at-
tacks™.

In a typical forensics scenario where you run a test machine against potential toxic
web contents I heavily encourage you to only whitelist the folders \ Windows\ and

2 For high security mitigation I suggest to combine Tuersteher Light with MZWriteScanner, an

AntiVirus-Solution and EMET (http://www.microsoft.com/en-us/download/details.aspx?id=41138). Although
this will not be the silver bullet it is really close to it, especially if you are subject to special
crafted targeted attacks that focus on draining your intellectual property and know how.

10

http://www.microsoft.com/en-us/download/details.aspx?id=41138
http://www.microsoft.com/en-us/download/details.aspx?id=41138

\Program Files\. Then fire up DbgView, open a toxic web site (e. g. running an ex-
ploit kit) and watch out what my driver blocks and logs.

4.4.1 Configurate and start up the driver

First at all define the list of paths or files you want to white- or blacklist, save this list
into an unicode file named tuersteher_light.ini and copy it to your Windows folder
(in most cases it is c:\Windows\). The file must be an unicode text file to prevent
deadlocking your machine. Tuersteher Light supports unicode making it possible to
use the driver all over the world, from the USA to Europe, Russia, Africa and also
Asia and the Middle East. Thus you are able to define filenames and paths like:

® JAJvacaymao! Iy ... WIRNihdo!Ga
The list of names is case sensitive, beware of that.

You are not allowed to specify paths and files directly by their DOS filename, e.g.
c:\Windows)\ etc. Instead you must use the path's device and volume descriptor. To
make things a bit more clear I included an example tuersteher_light.ini file into the
driver's package, so check out this file for more details and on how to specify the
names there. I also included a tool that prints out your mount points in the correct
format (see MountPointFunctions.exe).

As a first step I recommend to specify all paths or filenames by their path and file-
name you want to whitelist into the file tuersteher_light.ini. You start the whitelist
with the section identifier whitelist*. After each line of a path or filename in the sec-
tion of the whitelist you must set an asterisk (*). If you forget the asterisk you might
crash or deadlock your system after starting up the driver.

Files for the blacklist are defined in the section blacklist|. Files or paths you want to
blacklist must be marked with a vertical dash (). After each line of a blacklisted file
or path you must set the dash. If you forget the dash you might crash or deadlock
your system after starting up the driver.

If you enable to block the execution of binary modules by defining the [LETHAL]
tag, Tuersteher Light blocks such modules like in AppLocker. You can also enable a
logfile by defining [FORENSICS_PATH], telling Tuersteher Light to log the file-
names and/or paths into the file

tuersteher light.log

located in your Windows installation path (in most cases c:\ Windows). Make sure
that you copy an empty Unicode Textfile named tuersteher_light.log into your Win-
dows installation path (in most cases c:\ Windows).

11

Example of a tuersteher_light.ini file:

[LETHAL]

[FORENSICS PATH]

whitelist*

\Device\HarddiskVolume2\Windows\ *

\Device\HarddiskVolume2\Program Files\Common Files*
\Device\HarddiskVolume2\Users\Magnum\AppData\Local\Google\Chrome\User Data\PepperFlash*
\Device\HarddiskVolume2\Users\Magnum\AppData\Local\Google\Chrome\User Data\SwiftShader*
\Device\HarddiskVolume2\Program Files\MSBuild*
\Device\HarddiskVolume2\Program Files\Reference Assemblies*
\Device\HarddiskVolume2\Program Files\Windows Defender*
\Device\HarddiskVolume2\Program Files\Windows Journal*
\Device\HarddiskVolume2\Program Files\Windows Media Player*
\Device\HarddiskVolume2\Program Files\Windows NT*
\Device\HarddiskVolume2\Program Files\Windows Photo Viewer*
\Device\HarddiskVolume2\Program Files\Windows Portable Devices*
\Device\HarddiskVolume2\Program Files\Internet Explorer*
\Device\HarddiskVolume2\Program Files (x86)\Internet Explorer*
\Device\HarddiskVolume2\ProgramData\Microsoft\Windows Defender*
\Device\HarddiskVolume2\Program Files (x86)\Google*
\Device\HarddiskVolume2\Program Files (x86)\Microsoft Silverlight*
\Device\HarddiskVolume2\Program Files\7-Zip*
\Device\HarddiskVolume2\Program Files (x86) \Common Files*
\Device\HarddiskVolume2\ProgramData\Microsoft\IdentityCRL*
\Device\HarddiskVolume2\Users\Magnum\Desktop\Dbgview.exe*
\Device\HarddiskVolume2\Users\Magnum\Desktop\SoftMaker Office 2010*
\Device\HarddiskVolume2\Users\Magnum\Desktop\LibreOfficePortable*
\Device\HarddiskVolume2\Users\Magnum\Desktop\@a)¥acmyman! 10T _& .. 10T _&Nihdo! Li> L*
\Device\HarddiskVolume3\downloads\TrueCrypt*

blacklist|

\Device\HarddiskVolume2\Windows\notepad.exe |
\Device\HarddiskVolume2\Program Files\Internet Explorer\iexplore.exe|
\Device\HarddiskVolume2\Program Files (x86)\Internet Explorer\iexplore.exe|

Make sure that you divide the file into the two parts whitelist* and blacklist|. It is im-
portant not to mix filenames and paths from one section into another section. Mean-

ing, please do not something like:

whitelist*

\Device\HarddiskVolume2\Windows\ *

\Device\HarddiskVolume2\Windows\notepad.exe |

lblacklist]|

\Device\HarddiskVolume2\Program Files\Internet Explorer\iexplore.exe|
\Device\HarddiskVolume2\Program Files\Common Files*
\Device\HarddiskVolume2\Users\Magnum\AppData\Local\Google\Chrome\User Data\PepperFlash*

The (bad) example above will not work properly and might end up in a halting or
crashing system. So take care while defining the tuersteher_light.ini file!

The driver was compiled for Microsoft Windows Vista, 7, 8 and 8.1 (32/x86 and
64/x64 bit versions). To start it up go into the driver binary's path regarding your ver-
sion of Windows and execute the corresponding *.inf file in order to install the driver.

If you use a 32bit Version of Windows, driver signing is not required and you should
be able to run Tuersteher Light just out of the box. In Windows 7, 8 and 8.1 x64 you
need to digitally sign any driver. This is Microsoft policy for all kernel drivers in re-
cent versions of Windows, for more details see Driver Signing Requirements for Win-
dows.

12

As a temporary work around you can also disable the signature check in Window’s
boot options. An alternative way is to digitally sign the driver by yourself using a test
certificate and booting up Windows into the TESTSIGNING mode:

Download, install the Windows Driver Kit, then open a WDK Build Environment
console as Administrator.

Run the MakeCert.exe tool to create a test certificate, e.g. with:

MakeCert -r -pe -ss TestCertStoreName -n "CN=TestCertName" CertFileName.cer
Install the test certificate with CertMgr.exe, e.g. with

CertMgr /add CertFileName.cer /s /r localMachine root

Sign Tuersteher.sys with the test certificate, e.g. with

SignTool sign /v /s TestCertStoreName /n TestCertName Tuersteher.sys

Enable Windows TESTSIGNING mode, to do this, run the command

Bcdedit.exe -set TESTSIGNING ON

After these steps you should be able to run the driver without disabling driver signa-
ture check every time.

Since Q4/2014 Tiirsteher is commercial product, available at Excubits UG (haftungs-
beschrankt). The English version is also known as Excubits Bouncer.

442 Tuersteher Light For Windows XP

I got a lot of feedback on Tuersteher in the last few months, most regarding a special
edition of Tuersteher Light for Windows XP as some kind of endpoint protection sys-
tem. Since Microsoft discontinues support for Windows XD, this operating system
will no longer receive any (security) updates by Microsoft. Operating Windows XP is
risky, because security issues are not fixed, users must expect attacks on their beloved
XP machines. Something like Tuersteher for Windows XP sounds great to mitigate
against the risk. I think that's why I received so many comments and questions on a
special edition for XP. Tuersteher Light was initially not available for Windows XP,
but I am now proud to say: Tuersteher Light runs under Windows XP.

Tuersteher prevents your system from executing untrusted executables in a so-called
whitelisting approach. Just specify what files/paths are okay and what files/paths are
not, and the magical pixie dust behind Tuersteher manages to block any attempt to
pass by. Whitelisting is a well known technique and is already built into the business
versions of Microsoft Windows. Bad news for the ordinary user, because such techni-
ques are only available in the supreme ultimate editions of Windows (e.a. AppLock-
er), most users do not buy and use even worse: Windows XP never ever supported
whitelisting out of the box.

I wrote lots of kernel drivers back in the days to detect, analyze, protect and mitigate
against the ordinary malware out there. Once upon time I have decided to program a
simple to use driver for the ordinary Windows user. One of many solutions was Tuer-

13

steher Light. It is a AppLocker like, path-based minifilter driver that enables you to
specify from which path Windows is allowed to start executables. You are also able
to define bad paths, you do not want any executable started from and thus blacklist
them. From a blacklisted path even Windows itself is not able to start up an execut-
able file from.

For example, you can whitelist "c:\WINDOWS" and "c:\ Program files" and can
blacklist paths like your browser's cache "..\ Temporary Internet Files\" etc. By sim-
ply disallowing everything except "c:\WINDOWS\" and your trusted program file
paths you will mitigate against many attacks out there without a too complicated
configuration.

Tuersteher Light is a helping hand, mitigating against ordinary attack vectors and
supporting you to operate Windows XP a bit more secure these days. But keep in
mind: Tuersteher Light will not protect you from all possible attacks, especially tran-
sient in-memory attacks will not be caught - but these attacks are fairly not detectable
by the vast majority of protection tools out there, and most of them are very expen-
sive. If you need additional information on what Tuersteher Light is able to mitigate
against and what not, contact me.

In general: do not get reckless when running Tuersteher Light on your XP box! You
are still using an old and outdated operating system, so no time to get cocky. As 1
said, use it as a helping hand and get yourself updated soon.

Since Q4/2014 Tiirsteher is commercial product, available at Excubits UG (haftungs-
beschrankt). The English version is also known as Excubits Bouncer.

4.5 Building a totally locked down Windows for POS-, ATM- and kiosk-mode-
Envrioments

During my last winter holidays in 2013/2014 I was working on Tiirsteher and
brought its drivers to full Windows 8.1 support (incl. x64-support). I also tweaked
and optimized the driver and did a lot of stress testing on a Windows 8.1 box. While
performing boring driver testing the following idea came through my mind:

"On a kernel-level: Is it achievable to limit the access to executable code to
an absolute minimum, so that there is only a limited set of executables
loaded and allowed to run?”

Meaning: You are able to boot up Windows and run, for example, only notepad and
a browser - nothing else. And "nothing else" means absolutely nothing -- not even a
driver, or any additional module after you've started up the machine.

14

If this is possible, one is able to protect a kiosk-mode Windows envrioment besides
guest accounts, special lock down GPOs or other third party applications. Hence
such an approach provides additional security and mitigation against attacks on such
envrioments. Currently most of these kiosk-mode envrioments are protected by sim-
ple mitigations that just check for running only allowed executables, or limit access
to the Explorer and its "execute as..."-Dialog, hide the TaskManager, Startmenue or
Taskbar etc. Indeed, blocking all executables except the white listed ones is some sort
of protection at application/desktop level, but this is not an in depth approach. Most
available kiosk-mode envrioments do not block all the background binaries (DLLs,
drivers, etc...) that e. g. get fired up if an user plugs in an USB-device, manages to init
additional DLLs for plug-ins etc or even is able to detect that some sort of exploit is
able to execute a library.

Well, I began to adjust Tiirsteher's kernel mode driver a little bit, so that it logs and
measures out a minimum set of executables needed to successfully boot up and exe-
cute my pre-configured Windows 8.1. That proof of concept kiosk-mode Windows
should only allow to run Notepad, the Calculator and Google's Chrome. And by say-
ing "only allow" I mean, that only the vivit system binaries can be executed and only
application modules that are needed to run the named applications.

At the end I had a list of about 800 executable files (drivers, exe, ocx, dl], ...) that must
at least be available to Windows to boot up, log on and run the intended applications
noted above. I managed Tiirsteher to real-time-check this set of executable binaries
and to ensure, that those files are loaded correctly into system memory.

Impossible?! Noop! My proof of concept is able to boot up Windows with a mini-
mum set of executables and take care that only Notepad, Calculator and Chorme are
running on the system -- and even more: that all executable code loaded in is trust-
worthy. Even if ~800 files sounds like a huge number it is still little in contrast to all
the executables that are stored on a typical installation of Windows (also if your sub-
ject matter is a lovely vanilla installation of Windows).

Well, and what is it good for? Security! As I said some lines above: if you set up a
locked down Windows in an kiosk-mode envrioment it is still possible for attackers
to start up libraries or executables through a bug in the permitted applications.

How many of the sheer mass of executables of your actual running Windows box are
really needed by a POS, ATM or kiosk-mode envrioment, where you already limit ac-
cess to executables/applications through GPOs and others?

You will come to the conclusion: Not so much. So why should you allow to execute
such files even by accident (or through an exploit that utilizes them to start). It is bet-

15

ter to lock out everything that is not needed and this is what I did with Tiirsteher:
Limit things to the absolute minimum.

Do not get me wrong: GPOs and lock-down applications for POS, ATMs and kiosk-
mode envrioments are great mitigation techniques to protect them, but together with
a whitelisting approach like Tiirsteher that limits the attack vector to an absolute
minimum of really needed executable code, it is possible to protect your POS, ATM
or other kiosk-mod envrioment even better.

I tested Ttirsteher on several POS and kiosk-envrioments, but my resources are lim-
ited. So, if you are interested in protecting or locking-down your Windows-based
POS-, ATM- or kiosk-mode-envrioment feel free and contact me to set up Tiirsteher
for your needs (I have more than 20 years of experience in the field of Microsoft Win-
dows, and about 8 years of experience in Microsoft Windows Kernel Development, I
know how to set things up and give you a helping hand). The basic driver runs
under Windows 32bit/64bit-versions of 7, 8 and 8.1. The driver is also able to run
under Microsoft Windows Server Editions as well. If you are interested, do not hesi-
tate and fire an e-mail to me.

5 Catch (targeted) malware and other cyber attacks

More and more sophisticated and targeted zero-day attacks rise in our internet and
computer driven world. Traditional security defenses, such as anti-virus, IDS or next-
generation firewalls are not able to keep up with the amount of new attacks flooding
computer systems and networks day after day. The impact to organizations is signifi-
cant: Denial of Service (DoS), help desk calls, network downtime, information and in-
tellectual property loss, etc. That all summarizes up in lost productivity and lost
money.

Traditional tools like firewalls, anti-virus tools, behavior-analysis were designed only
for already known patterns of malicious code and attacks. But today we see personal-
ized attacks against cooperate IT-infrastructures, their users and the intelligence
property. These attacks survive most classical detection systems like firewalls, IDS,
AVs and filtering internet gateways. Such solutions offer only little protection against
such attackers, because new attacks (zero-days) have a really good chance getting not
detected and nailed by traditional solutions.

In the past years we saw lots of (targeted) attacks making use of zero-days in PDF,
well known office suits, scripting hosts and widely used web browsers or their plug-
ins. All these attacks trigger some kind of executable to place their malicious code on
an user's machine. Except the zero-days in most cases there is nothing new and spe-
cial there. Most targets getting hit because they lack an anti-virus solution or their

16

anti-viruses do not know the second or third stage malware served by the exploit.
Again, nothing new here - we all know that targeted attacks are prone being not de-
tected by the ordinary anti-virus.

A well known approach to chase executable code, especially second stage malware
that should be installed on your machine after an exploit successfully hit your system
is to use some kind of trust- and real-time-based proactive application control. Mean-
ing that code” will only be executed if such code was identified as trustworthy in
first instance. Unknown or already known untrusted code should be blocked™.

This is known as whitelisting as defined in Wikipedia™:

[...] A whitelist is a list or register of entities that, for one reason or another,
are being provided a particular privilege, service, mobility, access or recogni-
tion. Only entities on the list will be accepted, approved, and/or recognized.
Whitelisting is the converse of blacklisting, the practice of identifying enti-
ties that are denied, unrecognised, or ostracised, and the term "white-
list[ing]” was formed by back-formation from “blacklist[ing]”. [...]

The NSA notes™

[...] Application Whitelisting is a proactive security technique where only a
limited set of approved programs are allowed to run, while all other pro-
grams (including most malware) are blocked from running by default. [...]

And there come the minifilter drivers in place: Setting up the right minifilter driver
enables you to catch many exploits and their second or third stage malware that will
be installed on an ordinary Windows based computer system. You can combine filter-
ing

e [IRP_MJ_CREATE
e IRP_MJ_CREATE_NAMED_PIPE
e IRP_MJ_READ

e IRP_MJ WRITE

7 For example an executable, library, driver, script etc.

o There are plenty products out there that help you to protect against cyber attacks. For example

check out Bit9, Lumension or FireEye.
http://en.wikipedia.org/wiki/Whitelist
http://www.nsa.gov/ia/_files/factsheets/Application_Whitelisting_Trifold.pdf

29

30

17

to track what files will be written or accessed. One solution might be checking (exe-
cutable) content against a whitelist as defined by Wikipedia or NSA.

As part of Exploitbuster™ a friend of mine and me started to write and test many pro-
active application control and content drivers (e.g. a more advanced version of
MZWriteScanner). By using minifilter drivers we were (and are) able to compile the
drivers in no time for Windows XP (32 bit), Vista, 7 and 8 (32bit/64bit) and Windows
Server without changing any line of code. The drivers run stable, fast with a small bi-
nary footprint and we are able to adjust them at any time for upcoming needs and re-
quests.

I see minifilter drivers as powerful tools to detect many kinds of malware out there.
In contrast to other heavy weight tools that are closed source, require central manag-
ing servers etc., once you have build up your own minifilter drivers they are as
powerful as a Swiss Army Knife. For (us) forensics guys they are awesomely perfect
because there must be no GUI, nor a console application to run it from etc. For exam-
ple our application control driver Tiirsteher” is a stand alone driver that just needs a
configuration file and that's it. It does not need a service and fires up immediately
after kernel init. Logs are instantly written through DbgPrint() or into a simple log
tile making it working smooth in automated forensic scenarios. Everything can be
done in the driver itself, there is no communication into real-mode, there is no GUI
and other code making stuff complicated.

We successfully ran Tiirsteher against well known exploits and it is really nice to
know that Tiirsteher was able to detect and block all recently reported cyber attacks
reported since November 2012 until now (July 2013). To us this proves that combin-
ing minifilter drivers leads in advanced protection or analyzing systems that are able
to defend or to detect state of the art malware and cyber attacks without any addi-
tional definition or heuristic data base™. This makes you independent and it is an ad-
vantage over the classical anti-virus solutions - especially if you are subject to tar-
geted attacks where we all know anti-viruses frequently fail.

6 Drawbacks

There are not just pros, hence I will give you an overview on the drawbacks. The fol-
lowing does not mean that minifilters are useless or can be attacked by every script
kid, it is still hard to bypass them but it is also good to know, that nothing is 100%

3 For more details see http://www.exploitbuster.com

32 .. .
Tirsteher is the German term for doorman or bouncer.

3 s I
Remark: Minifilter drivers enhance security and as such one might use them in combination

with a firewall and anti-virus. But well, we think that in controlled scenarios one might drop an
anti-virus and just use a firewall and a high class minifilter driver and will not lose any security.

18

bullet proof and there are vectors that could be attacked. It does not mean that they
will be attacked (on your use case) but still keep the following paragraphs in mind
when developing your minifilter drivers in the context of security solutions.

Monitoring minifilter drivers might help; as the word might implies, there exist some
drawbacks. If you're getting infected by some sticky-icky beast™ that makes use of 0-
days enlarging its privileges to ring-0 (kernel mode) and using rootkit technology to
hide its objects you are done — it is just that simple. This is also true for session based
malware that will be executed on the fly without using well known API-functions to
load their malicious code. E.g. an exploit that does not use LoadLibrary, CreateFile or
CreateProcess etc. to start up the second stage code, meaning malware that just re-
sists in memory through its exploit without an executable image loaded. Hence it
will be loaded and initialized by the exploit itself, not by any operating system func-
tion™.

Reflective DLL injection™ is a really nice library injection technique in which the Ii-
brary is responsible for loading itself by implementing a minimal Portable Executable
(PE) file loader. The main advantage of self made library loading is that an attacker
does not use any of the operating system featured functions to load executable code
into memory (like LoadLibrary, Exec, CreateProcess, etc.), hence as such, the
“loaded” code is not registered in any way with the host system and as a result is
largely undetectable at both a system and process level. A problem is, that an execut-
able injected with this method is almost transient and will be gone after a reboot if
the attacker cannot ensure, that his exploit will take place after a reboot to re-inject
the library again.

Another drawback comes in place if you are using so called scripting-hosts on your
machine: E.g. Java, Python, Ruby or Perl scripts might also be malicious but, but it is
likely that you will not see the script itself as an originator; in most cases you will log
just see the scripting host’s executable” which does not seem to be suspicious in first
instance. To protect against such attacks you must expand filtering on an accesed
file’s content and block such file, if it contains unknown or untrusted lines of code.
This is not an easy task to do. Thus if possible I recommend not to use any scripting
host on targeted machines.

* I am talking about a targeted attack, remember Stuxnet for example.

» Such malware is very rare and hard to implement. Currently we saw such exploits as proof of
concepts - never heard about a widely spread exploit.

% As introduced by Stephen Fewer in ,, Reflective DLL Injection”, see http://www.harmonysecur-
ity.com/ReflectiveDllInjection.html

¥ E.g. the just in time compiler or interpreter’s executable.

19

I think that transient malware in combination with scripting hosts can be a show
stopper for minifilter drivers if you do not add additional logic into the filter mecha-
nism itself - meaning: a simple and “stupid” minifilter driver is not enough. Espe-
cially care should be taken with regard to always on systems like Windows 8, be-
cause new operating systems are build to run for weeks and months without a “cold”
start. This makes them perfectly suitable for transient malware, that could resist for a
long time, logging the keyboard, screen, scanning for interesting files etc. As shown
by Samrat Ashok's kautilya™ framework it is really simple to program PowerShell
based hacking tools that run behind the scenes without executing suspicious execut-
ables or even injecting a library into another process. Well, we will see what's coming
up next. I expect some fancy and tricky transient malware approaches for the upcom-
ing versions of Windows in the next years. Thus new filter mechanisms are heavily
needed to track such upcoming malware.

7 Conclusion

Using a kernel minifilter driver makes it easy to screen and protect your Windows
based operating system on a system wide basis. Such drivers might also act as a first
step in analyzing the behavior of malicious code trying create or modify files on your
system without the painful process of debugging or disassembling an exploit or its
dropper in first instance”. Minifilter drivers will not avoid further analysis, but they
give you fast and initial results on what is going on. This helps to protect a critical en-
vironments and to deploy mitigations before someone hit the whole infrastructure.

I see minifilter drivers as powerful tools against many kinds of malware out there. In
contrast to other heavy weight tools requiring central managing servers etc., once
you have build up your own minifilter drivers they are powerful and flexible like a
Swiss Army Knife. So I highly encourage everyone in the Windows based security
scene to have a deep look into the heavy-duty stuff one can achieve with minifilter
drivers.

Although minifilter drivers are cool with regards to transient malware I highly rec-
ommend

®* never lean back,
® keep up to date,

® reanalyze your minifilter approach once a year (at minimum) and

% For more details see http://code.google.com/p/kautilya

¥ It is also possible to monitor the load of modules as described in "Kernel Data and Filtering Sup-

port".

20

® always check on what the bad guys currently do.

21

Are you subject to targeted and special crafted (cyber) attacks?

Your Windows based information technology is attacked to drain your intellectual property?
An Anti-Virus and other protection systems are too generic forcing against these attacks?
Well, you have visited the right place.

During the last years we carefully developed technology against attacks on Windows
based operating systems. Benefit from our experience, we are able to

build up fully customized Microsoft Windows Kernel drivers help-
ing you to identify, protect & mitigate against threats.

certify and audit our sources if needed. The main parts of our solu-

tions are less than 1800 lines of code, so it is easy to peek through.
If you are interested in our solutions just contact us via e-mail:
info@excubits.com
We can build up fully customized demos with respect to your needs.

Do not hesitate. We look forward hearing from you.

http://excubits.com/

	1 Introduction
	2 Kernel-based monitoring by using a minifilter driver
	3 How to implement a monitoring minifilter driver
	4 Example drivers
	4.1 Monitoring IRP_MJ_CREATE
	4.2 A minifilter that monitors executables written on your disk
	4.3 Tracking executables on Windows
	4.4 Tuersteher Light: A Path Based Application Whitelisting Filter Driver
	4.4.1 Configurate and start up the driver
	4.4.2 Tuersteher Light For Windows XP

	4.5 Building a totally locked down Windows for POS-, ATM- and kiosk-mode-Envrioments

	5 Catch (targeted) malware and other cyber attacks
	6 Drawbacks
	7 Conclusion

